
J .  Fluid Mech. (1988), vol. 181, p p .  529-534 

Printed in Great Britain 
529 

Resonantly interacting water waves 

By JOSEPH B. KELLER 
Departments of Mathematics and Mechanical Engineering, Stanford University, 

Stanford, CA 94305, USA 

(Received 24 April 1986 and in revised form 25 September 1987) 

Coupled nonlinear equations are derived for the amplitudes of two small-amplitude 
resonantly interacting gravity waves in water of non-uniform depth. Such resonance 
is possible only for wavelengths long compared to the depth. It is shown that the 
same equations are obtained from the exact Euler equations, from the nonlinear 
shallow water theory, and from the Boussinesq equations. 

1. Introduction 
Two water waves interact resonantly if the phase function S,  of one wave is 

exactly or nearly twice the phase function S ,  of the other wave. For gravity waves 
this is possible only if both wavelengths are long compared to the water depth. Then 
the two wave amplitudes satisfy a pair of coupled nonlinear equations along the 
common rays of the two waves, provided that the amplitudes are small. These 
equations have been derived by Simmons ( 1969) for capillary-gravity waves with 
constant frequencies and wavenumbers in water of infinite depth. Nayfeh (1970) 
derived their steady state form in water of constant finite depth, and many other 
authors have derived corresponding equations for three and four wave resonances. 
This work is reviewed in the recent book of Craik (1985). 

We shall derive the amplitude equations for two resonant or nearly resonant 
gravity waves in water of non-uniform depth with variable frequency and variable 
wavenumber. First we derive them from the exact Euler equations, then again from 
the nonlinear shallow water theory, and finally from the Boussinesq equations. In  all 
three cases we obtain the same equations, which shows that all three theories are 
applicable in the long wave regime which we consider. The derivation is based on the 
usual asymptotic expansion appropriate to modulated waves. 

Previously, Lau & Barcilon (1972) derived amplitude equations from the 
Boussinesq equations. We show that their equations result as approximations to ours 
when the water depth is nearly constant. They were used by Bona, Boczar- 
Karakiewicz & Cohen (1987) in their study of sand bar formation. Bona’s questions 
about the equations led to our work. 

2. Formulation and derivation 
Let $’(x’, y‘, z’, t ’ )  be the velocity potential of a flow in the region bounded above by 

the free surface yf = ~’(x‘z ’ ,  t’) and below by the bottom y’ = -&ex’, ez’). We 
introduce the new variables 

x = ex’, y = y’, z = €Z’ ,  t = et’, 
+(x, y, 2, t )  = $’(x’, y’, z’, t ’ ) ,  q ( x ,  2, t )  = ((XI, z’, t ’ ) .  (2.1) 

Here e is a small parameter equal to the ratio of a typical vertical scale length to a 
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typical horizontal scale length. Then the kinematic and dynamic free surface 
conditions, the Laplace equation, and the kinematic bottom condition become : 

The acceleration due to gravity is denoted g. 

products so we write 
We seek a solution of (2.2) consisting of two primary waves, and their modulation 

q(x ,  z ,  t )  = c eic-lsj(z,zJ) [u,(z, z ,  t )  + eb,(x, z ,  t ) ]  + 0 ( e 2 ) .  (2.3) , 
Since 7 is real the terms occur in pairs +j with 8, real, S-, = -Si, u - ~  = a; and 
b-, = bj*. Corresponding to (2 .3 )  we seek $ in the form 

wi = -a, si, ,ti = lvs,l. 
They are related by k, tanh ki h = $19. 

The form of the first term in (2.4) and (2.6) follows from the linear theory of surface 
waves. They could have been deduced from (2.2) but instead we shall just verify that 
they are correct. Reality of $ requires that B-j = B;. We assume that a, = 0 for 

Equation (2.6) is a first-order partial differential equation for the phase function 
8,. It is just the eiconal equation or dispersion equation of linear wave theory, and 
its characteristics are the rays. 

Now we substitute (2.3) and (2.4) into (2.2) and find that the coefficients of eo 
vanish as a consequence of (2.6) and the form of the first term in (2.4). Then we 
equate to  zero the coefficient of e in each equation. Next we suppose that S, is nearly 
equal to 2S,, so we introduce the small 'detuning' S defined by 

j * k1, k2. 

6(x,  z ,  t )  = 2S1 -8,. (2.7) 

Then we equate all the terms in each equation obtained from the coefficients of E 

which have exactly or nearly the phase S ,  and separately those with exactly or nearly 
the phase S,. The solvability conditions for these two sets of equations lead to the 
following equations for a, and a2 : 
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VS,*VU,+$,V* kq2 1 + 2k2 h 

[ ( sinh2k2h 

U 
2 a t a , - ~ a t w 2 +  

w2 

3. Simplification of the amplitude equations 

energy density E(a) and the group velocity C ( k ) ,  which are defined by 
The two amplitude equations can be simplified by introducing the complex wave 

E(a) = $pga2, (3.1) 

(3.2) C(k) = :(gk-l tanh kh); (1 + 2kh/sinh 2kh). 

In  (3.1) p is the density of water. Now we multiply (2.8) by ipgal /wl  and wc can 
rewrite it as 

(w i  - wlw2 + w ; )  -+-->-A 
w2 w1 w1 g2 

e-i8/f. 

(3.3) 
I k i  k * k  k2 w 

Here El = E(a,) and C, = C(kl). Similarly we can write (2.9) as 

When the nonlinear terms on the right-hand side are neglected, the two equations 
(3.3) and (3.4) are uncoupled and linear in El and E ,  respectively. Then they are of 
the form derived by Whitham (1967), which expresses conservation of wave action. 
If the time derivative is omitted the linear equations are both equivalent to equation 
(27) of Keller (1958) for time harmonic waves. 

The left-hand side of (3.3) or (3.4) can be written as follows, omitting the 
subscripts : 

V.(Ck-lVS). (3 .5)  

Here d/dt = a,+Ck-'VS.V is just the derivative with respect to t following a point 
moving with the group velocity C in the ray direction k-'VS. Thus d/dt is the 
derivative along a ray. With this interpretation, the left-hand sides of (3.3) and (3.4) 
become first-order ordinary differential expressions along rays. When the right-hand 
sides are zero, each equation is the transport equation of linear geometrical optics. 
With non-zero right-hand sides, they are coupled transport equations. 

From (2.7) it follows that k,  = 24-V6 and w2 = 2w1-a,6. When 6 = 0, (2.6) 
shows that this relation is possible only if k, h and k, h are both small, so that tanh 
kj h z k j  h. If V6 and 6, are not zero but are small it is still necessary that k j  h be small. 
Thus resonance of a wave with its first harmonic can occur only if both waves have 
wavelengths which are long compared to the depth. But then the coefficients in (3.3) 
and (3.4) can be simplified as follows: 

- (ghP, (3.6) 

(3.7) 
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We now use these coefficients in (3.3) and (3.4), writing the left-hand sides in the 
form (3.5), to obtain 

(3.9) 

(3.10) 

Here f = VS,/IVS,I is a unit vector in the direction of propagation along a ray. These 
equations (3.9) and (3.10) are the final forms of the equations for a, and a2. 

When the detuning S is constant, these equations have a solution in which a, is real 
and a2 = ia", cis/€ where 8, is real. For this solution we can add (3.9) to -2e--2i8/e times 
(3.10) to get the conservation equation 

(3.11) 

where B2 = E(6,). Since a, and 8, are real, El and 9, are the actual wave energy 
densities of the two waves. Even when S is not constant, (3.9) and (3.10) can be 
rewritten as a Hamiltonian system (Craig, personal communication). 

4. Nonlinear shallow water theory 
Equations (3.9) and (3.10) hold when the water depth is small compared to the 

wavelength. Therefore it is of interest to see if they can be derived from the equations 
of the nonlinear shallow water theory. For simplicity we shall consider only one 
horizontal dimension x. Then in this theory, the horizontal velocity u(x,t) and the 
surface elevation ~ ( x ,  t )  satisfy the equations 

Ut + uu, + gyz = 0, 

Tt + [UfT + h)l, = 0. 

(4.1) 

(4.21 

We represent 7 by the right-hand side of (2.3) multiplied by e,  and represent u 
similarly : 

~ ( x ,  t)  = E 2 eie-'S+gt) [aj(x,  t )  + Ebj(x, t ) ]  + 0 ( € 3 ) ,  

I: eie-'Sj(s,t) [Ajb, t )  + q x ,  t)l + O(E3) ,  

(4.3) 

(4.4) 

j 

U(x, t )  = 
i 

Now we use (4.3) and (4.4) in (4.1) and (4.2). From the leading terms, of order eo, 
we find that wi = (gh) ik j  and A j  = (g/h)aa,. The terms of order E yield, after some 
algebra, 

(4.5) 

(4.6) 

2[a, a, + (gh)taz a,] + a, a,(& = - 3i(g/h)i k, a: a, e-isle, 

2[a, a2 + (gh$ a, a,] + a2 a,(gh): = - 3i(g/h); IC, u: ei8/e. 

These are the equations for a, and a2. To compare them with (3.9) and (3.10) we 
multiply (4.5) by ipga, and (4.6) by ipga, and write d/dt = a, + (gh):a,. Then we note 
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that  dwi/dt = 0 as a consequence of the dispersion equation. Therefore we can write 
the results in the form 

d E l  E 1 3i 
dt w1 w1 h l 2  

+‘a,(gh)Y = --E a (a:/a ) e-i8/E, _ _  
1 (4.7) 

These equations agree exactly with (3.9) and (3.10), specialized to the case of one 
horizontal dimension. 

5. The Boussinesq equations 
Lau & Barcilon (1972) considered wave interaction on the basis of a Boussinesq 

system of equations. If we introduce the new variables x’ = e2x and t‘ = e2t into those 
equations and then omit the primes, the equations become 

ut + uu, + g7, = €* [p uzzt + hh, U x t  + ihh,, ut], 

7t + [u(r + h)l, = 0. 

(5.1) 

(5.2) 

Now we use (4.3) and (4.4) for 7 and u in (5.1) and (5.2) and proceed as before. Again 
we obtain (4.5) and (4.6), which lead to (4.7) and (4.8). Thus in the scaling considered 
here, the Boussinesq system (5.1) and (5.2) yields the same amplitude equations as 
do the Euler equations and the nonlinear shallow water theory. 

From (5.1) and (5.2) Lau & Barcilon (1972) derived their equations (3.3) and (3.4) 
for two amplitudes which we shall call A,(x) and A2(x). They assumed that the A, 
were independent oft ,  that the wi were constant, and that h = H+eHf(x) .  With this 
assumption on h it  follows from (2.6) that ki = k;-$&;f(x)+O(e2),  where k; is the 
solution of (2.6) with h = H .  They also wrote each wave as A,(x) eis-’(L~z-w~t) whereas 
we have written ai eit-ISj. Therefore we expect that a, = A,(x) exp[ie-l (k;x-w,t 
-Sj)]. To derive equations for A,  we begin with (3.9) and (3.10), set Ei = ipga; and use 
the preceding expression for a, in terms of A,. When we make x one-dimensional and 
use their assumptions on h, we see that the divergence terms are O(e), so they can be 
omitted. Then we obtain 

2(gH)i - 3i 
[a,A,+if(x)] = -ATA2 H eiAkz, 

w1 

- 3i 
w2 2H 

[a,A, + if(x)] = -A; e-iAkx. 
Z(gH)t 

(5.3) 

(5.4) 

Here Ak = kt-2kjl. These equations are exactly the forms of their equations which 
result from simplifying their coefficients by using the fact that w j  - k? in their non- 
dimensionalization. 
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